
Avant de commencer

Install docker - CLi / .sh
Portainer Apps Templates
ARM64

Se procurer l'OS
Premières bidouilles
Increase Swap
Install Open Media Vault
Install Docker et Portainer

AMD64

Se procurer l'OS
Increase swap
Premières bidouilles
Installer OMV Extras

Install Docker and Portainer on Debian for Self-Hosting

Mise en place

1. Update the apt package index and install packages to allow apt to use a repository over
HTTPS:

2. Add Docker’s official GPG key:

3. Use the following command to set up the repository:

1. Update the apt package index:

2. Install Docker Engine, containerd, and Docker Compose:

3. You can verify that Docker Engine is installed correctly by running the hello-world image.

Install docker - CLi / .sh
Set up the repository

sudo apt-get update

sudo apt-get install \

 ca-certificates \

 curl \

 gnupg \

 lsb-release

sudo mkdir -p /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/debian/gpg | sudo gpg --dearmor -o

/etc/apt/keyrings/docker.gpg

echo \

 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg]

https://download.docker.com/linux/debian \

 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

Install Docker Engine

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin

1. Create Docker Volume to store the data:

2. Install Portainer Server:

1. In a browser, visit the following address:

2. The first time you access Portainer, the system asks to create a password for the admin
user. Type the password twice and select the Create user button.

3. Select the Get Started button to go to the dashboard and start using Portainer in the
local environment only.

https://github.com/docker/docker-install

sudo docker run hello-world

Install Portainer

docker volume create portainer_data

docker run -d -p 8000:8000 -p 9000:9000 --name portainer \

--restart=always \

-v /var/run/docker.sock:/var/run/docker.sock \

-v portainer_data:/data \

portainer/portainer-ce:latest

Access Portainer Dashboard

http://<yourmachineipadress>:9000

Install docker with script from https://get.docker.com :

curl -fsSL https://get.docker.com -o get-docker.sh

sh get-docker.sh

https://github.com/docker/docker-install
https://get.docker.com

Original : https://raw.githubusercontent.com/portainer/templates/master/templates-2.0.json

Technorabilia :

For Portainer v1: https://raw.githubusercontent.com/technorabilia/portainer-
templates/main/lsio/templates/templates-1.20.0.json
For Portainer v2: https://raw.githubusercontent.com/technorabilia/portainer-
templates/main/lsio/templates/templates-2.0.json

SelfhostedPro :

For Portainer v1:
https://raw.githubusercontent.com/SelfhostedPro/selfhosted_templates/master/Template/o
mv-v1.json
For Portainer v2:
https://raw.githubusercontent.com/SelfhostedPro/selfhosted_templates/master/Template/o
mv-v2.json

DBTech : https://raw.githubusercontent.com/dnburgess/self-hosted-template/master/template.json

Mikestraney : https://raw.githubusercontent.com/mikestraney/portainer-
templates/master/templates.json

Portainer Apps Templates

https://raw.githubusercontent.com/portainer/templates/master/templates-2.0.json
https://raw.githubusercontent.com/technorabilia/portainer-templates/main/lsio/templates/templates-1.20.0.json
https://raw.githubusercontent.com/technorabilia/portainer-templates/main/lsio/templates/templates-1.20.0.json
https://raw.githubusercontent.com/technorabilia/portainer-templates/main/lsio/templates/templates-2.0.json
https://raw.githubusercontent.com/technorabilia/portainer-templates/main/lsio/templates/templates-2.0.json
https://raw.githubusercontent.com/SelfhostedPro/selfhosted_templates/master/Template/omv-v1.json
https://raw.githubusercontent.com/SelfhostedPro/selfhosted_templates/master/Template/omv-v1.json
https://raw.githubusercontent.com/SelfhostedPro/selfhosted_templates/master/Template/omv-v2.json
https://raw.githubusercontent.com/SelfhostedPro/selfhosted_templates/master/Template/omv-v2.json
https://raw.githubusercontent.com/dnburgess/self-hosted-template/master/template.json
https://raw.githubusercontent.com/mikestraney/portainer-templates/master/templates.json
https://raw.githubusercontent.com/mikestraney/portainer-templates/master/templates.json

ARM64

ARM64

https://downloads.raspberrypi.org/raspios_lite_arm64/images/

Se procurer l'OS
Raspberry Pi OS 64bits

ARM64

New Pi password

New root password

Config

Check RAM & SWAP

Remove Pi user

Premières bidouilles

passwd

sudo passwd

sudo raspi-config #change gpu, hostname, password, TZ

sudo apt update

sudo apt upgrade -y

sudo reboot now

#(sudo apt update && sudo apt full-upgrade -y)

free -m

sudo adduser steph

sudo adduser steph sudo

sudo cp /etc/sudoers.d/010_pi-nopasswd /etc/sudoers.d/010_steph-nopasswd

sudo chmod u+w /etc/sudoers.d/010_steph-nopasswd

sudo nano /etc/sudoers.d/010_steph-nopasswd (replace pi > steph)

sudo chmod u-w /etc/sudoers.d/010_steph-nopasswd

sudo reboot

https://gist.github.com/JeremyIglehart/84251d8b6405eaa640d6546b2a1ae8bc

Then login as your new user

sudo deluser -remove-home pi

sudo rm -vf /etc/sudoers.d/010_pi-nopasswd)

ARM64

1. Before we can increase our Raspberry Pi’s swap file, we must first temporarily stop it.

The swap file cannot be in use while we increase it.

To stop the operating system from using the current swap file, run the following command.

Increase Swap

xxxxxxxxxx

1
sudo dphys-swapfile swapoff

2. Next, we need to modify the swap file configuration file.

We can open this file using nano by using the command below.

xxxxxxxxxx

1
sudo nano /etc/dphys-swapfile

3. Within this config file, find the following line of text.

You can use CTRL + W to search for text within the file.

xxxxxxxxxx

1
CONF_SWAPSIZE=100

To increase or decrease the swap file, all you need to do is modify the numerical value you find
here.

This number is the size of the swap in megabytes.

For example, if we wanted to increase our swap size to 1GB, we would change that line to the
following.

xxxxxxxxxx

1
CONF_SWAPSIZE=1024

Whatever size you set, you must have that space available on your SD card.

4. Once you have made the change, save the file by pressing CTRL + X, followed by Y, then ENTER.

5. We can now re-initialize the Raspberry Pi’s swap file by running the command below.

Running this command will delete the original swap file and recreate it to fit the newly defined size.

xxxxxxxxxx

1
sudo dphys-swapfile setup

6. With the swap now recreated to the newly defined size, we can now turn the swap back on.

To start the operating systems swap system, run the following command.

xxxxxxxxxx

1
sudo dphys-swapfile swapon

While the new swapfile is now switched on, programs will not know that this new memory exists
until they restart.

7. If you want all programs to be reloaded with access to the new memory pool, then the easiest
way is to restart your device.

To restart your Raspberry Pi, all you need to do is run the command below.

xxxxxxxxxx

1
sudo reboot

ARM64

Go to local IP

Default login : admin

Default password : openmediavault

- General settings > Change port to 82

- reconnect

- General settings > Auto logout > 60min

- General settings > Web admin > change password

- Check Time Zone

- Notifications

- fail2ban plug in

- Disks > Select > Wipe

- File systems > create > select hd > name Files > format > mount

- Shared folders > add > Files > select hd > Everyone read/write

- Shared folders > add > Config > select hd > Everyone read/write

- Shared folders > add > Databases > select hd > Everyone read/write

- Shared folders > add > Nextcloud > select hd > Everyone read/write

- SMB/CIFS : Enable / Shares > add > choose Files + config etc... > Public : only guests

Install Open Media Vault
wget -O - https://github.com/OpenMediaVault-Plugin-Developers/installScript/raw/master/install

| sudo bash

sudo reboot now

Check dans windows : \\192.168.x.x et drag & drop

https://wiki.steph.click/about:blank

ARM64

OMV-Extras : install docker + portainer

Install Docker et Portainer

AMD64

AMD64

- Debian + OMV: https://www.openmediavault.org/?page_id=77

- Debian: https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/debian-11.2.0-amd64-
netinst.iso

Se procurer l'OS
OpenMediaVault

https://www.openmediavault.org/?page_id=77

AMD64

Link

Before we begin, we can check if the system already has some swap space available. It is possible
to have multiple swap files or swap partitions, but generally one should be enough.

We can see if the system has any configured swap by typing:

If you don’t get back any output, this means your system does not have swap space available
currently.

You can verify that there is no active swap using the free utility:

Before we create our swap file, we’ll check our current disk usage to make sure we have enough
space. Do this by entering:

Output

Increase swap

Step 1 – Checking the System for Swap
Information

sudo swapon --show

free -h

Step 2 – Checking Available Space on
the Hard Drive Partition

df -h

Filesystem Size Used Avail Use% Mounted on

udev 488M 0 488M 0% /dev

https://www.digitalocean.com/community/tutorials/how-to-add-swap-space-on-debian-10

The device with / in the Mounted on column is our disk in this case. We have plenty of space
available in this example (only 1.4G used). Your usage will probably be different.

Although there are many opinions about the appropriate size of a swap space, it really depends on
your personal preferences and your application requirements. Generally, an amount equal to or
double the amount of RAM on your system is a good starting point. Another good rule of thumb is
that anything over 4G of swap is probably unnecessary if you are just using it as a RAM fallback.

Now that we know our available hard drive space, we can create a swap file on our filesystem. We
will allocate a file of the swap size that we want called swapfile in our root (/) directory.

The best way of creating a swap file is with the fallocate program. This command instantly
creates a file of the specified size.

Since the server in our example has 1G of RAM, we will create a 1G file in this guide. Adjust this to
meet the needs of your own server:

We can verify that the correct amount of space was reserved by typing:

Output

Our file has been created with the correct amount of space set aside.

Now that we have a file of the correct size available, we need to actually turn this into swap space.

tmpfs 100M 4.5M 96M 5% /run

/dev/vda1 25G 989M 23G 5% /

tmpfs 499M 0 499M 0% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 499M 0 499M 0% /sys/fs/cgroup

tmpfs 100M 0 100M 0% /run/user/1001

Step 3 – Creating a Swap File

sudo fallocate -l 1G /swapfile

ls -lh /swapfile

-rw-r--r-- 1 root root 1.0G May 29 17:34 /swapfile

Step 4 – Enabling the Swap File

First, we need to lock down the permissions of the file so that only the users with root privileges
can read the contents. This prevents normal users from being able to access the file, which would
have significant security implications.

Make the file only accessible to root by typing:

Verify the permissions change by typing:

Output

As you can see, only the root user has the read and write flags enabled.

We can now mark the file as swap space by typing:

Output

After marking the file, we can enable the swap file, allowing our system to start using it:

Verify that the swap is available by typing:

Output

We can check the output of the free utility again to corroborate our findings:

Output

sudo chmod 600 /swapfile

ls -lh /swapfile

-rw------- 1 root root 1.0G May 29 17:34 /swapfile

sudo mkswap /swapfile

Setting up swapspace version 1, size = 1024 MiB (1073737728 bytes)

no label, UUID=b591444e-c12b-45a6-90fc-e8b24c67c006f

sudo swapon /swapfile

sudo swapon --show

NAME TYPE SIZE USED PRIO

/swapfile file 1024M 0B -2

free -h

Our swap has been set up successfully and our operating system will begin to use it as necessary.

Our recent changes have enabled the swap file for the current session. However, if we reboot, the
server will not retain the swap settings automatically. We can change this by adding the swap file
to our /etc/fstab file.

Back up the /etc/fstab file in case anything goes wrong:

Add the swap file information to the end of your /etc/fstab file by typing:

Next we’ll review some settings we can update to tune our swap space.

 total used free shared buff/cache available

Mem: 990Mi 37Mi 860Mi 4.0Mi 92Mi 834Mi

Swap: 1.0Gi 0B 1.0Gi

Step 5 – Making the Swap File
Permanent

sudo cp /etc/fstab /etc/fstab.bak

echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab

AMD64

New Pi password

New root password

Config

Check RAM & SWAP

Remove Pi user

Premières bidouilles

passwd

sudo passwd

sudo raspi-config #change gpu, hostname, password, TZ

sudo apt update

sudo apt upgrade -y

sudo reboot now

#(sudo apt update && sudo apt full-upgrade -y)

free -m

sudo adduser steph

sudo adduser steph sudo

sudo cp /etc/sudoers.d/010_pi-nopasswd /etc/sudoers.d/010_steph-nopasswd

sudo chmod u+w /etc/sudoers.d/010_steph-nopasswd

sudo nano /etc/sudoers.d/010_steph-nopasswd (replace pi > steph)

sudo chmod u-w /etc/sudoers.d/010_steph-nopasswd

sudo reboot

https://gist.github.com/JeremyIglehart/84251d8b6405eaa640d6546b2a1ae8bc

Then login as your new user

sudo deluser -remove-home pi

sudo rm -vf /etc/sudoers.d/010_pi-nopasswd)

AMD64

OMV5

OMV6

Go to local IP

Default login : admin

Default password : openmediavault

- General settings > Change port to 82

- reconnect

- General settings > Auto logout > 60min

- General settings > Web admin > change password

- Check Time Zone

- Notifications

- fail2ban plug in

- Disks > Select > Wipe

- File systems > create > select hd > name Files > format > mount

- Shared folders > add > Files > select hd > Everyone read/write

- Shared folders > add > Config > select hd > Everyone read/write

Installer OMV Extras

sudo wget -O - https://github.com/OpenMediaVault-Plugin-

Developers/installScript/raw/master/install | sudo bash

sudo dpkg --configure -a

 wget -O - https://github.com/OpenMediaVault-Plugin-Developers/packages/raw/master/install |

bash

- Shared folders > add > Databases > select hd > Everyone read/write

- Shared folders > add > Nextcloud > select hd > Everyone read/write

- SMB/CIFS : Enable / Shares > add > choose Files + config etc... > Public : only guests

Check dans windows : \\192.168.x.x et drag & drop

https://wiki.steph.click/about:blank

When I started tinkering with self-hosting, Docker was by far my biggest hurdle. But to learn more
about Docker, we need to figure out how to install it first. Then, later we will install and use
Portainer to manage and monitor our Docker containers.

Docker does a good job at explaining how to install Docker on specific distros. However, I always
found it intimidating with how the instructions are laid out. So this guide is from a different
perspective. A perspective from someone who once was lost and was learning like you are.

I'll lay it out in a much more simple format for beginners to move forward as quickly as possible.
Aftrall, we live in a "I want it now" society and quite frankly, that's how I would want to see it done!

It's important to keep your host machine up to date. This can include important patches that keep
your host safe from vulnerabilities.

Step 1. Update the host.

Step 2. Upgrade the host.

Docker has made this very simple by creating an official install script that does all the work for you.
You can see what this script includes and how it works on the Docker Github repo.

Install Docker and Portainer on
Debian for Self-Hosting

Table of Contents

Update and upgrade the Host Machine

apt update

apt upgrade -y

Install Docker on your Host Machine

The purpose of the install script is for a convenience for quickly installing the
latest Docker-CE releases on the supported linux distros. It is not recommended
to depend on this script for deployment to production systems. For more

“

https://docs.docker.com/engine/install/debian/?ref=noted.lol
https://github.com/docker/docker-install?ref=noted.lol

I'll be using Ubuntu 23.04 standard on Proxmox to run these commands as root. You may need to
add sudo at the beginning of these commands if you are not logged in as root.

Step 1. Install curl.

Step 2. Install Docker.

Step 3. Check if Docker is functioning.

Step 4. Force Docker to start at boot.

This step is not necessary but can make the process of starting docker quicker by doing it
automatically. This way you don't have to manually start Docker when you reboot your host
machine. I haven't seen any official documentation but Docker always seems to start automatically
regardless after testing on my hardware.

As you get more comfortable with Docker and setting up self-hosted applications, you'll also find it
useful to install Docker Compose and Git along the way.

Run the following command to install Docker Compose

thorough instructions for installing on the supported distros, see the install
instructions.

apt install curl

curl -fsSL https://get.docker.com -o get-docker.sh

sh get-docker.sh

systemctl status docker

systemctl enable docker

Install Docker Compose on the Host
Machine

https://docs.docker.com/engine/install/?ref=noted.lol
https://docs.docker.com/engine/install/?ref=noted.lol

You may come across a project that requires you to clone it to your host machine from Github. To
do this, you will need to install Git.

Now you can use the git clone command to clone repositories to your host machine.

I think it's a great idea to learn basic Docker commands because they will come in handy at a later
time. Especially when you want to update Portainer. Portainer makes managing Docker containers
easier and in my opinion, faster. You want it now right? �� Well Portainer will give you a nice
graphic interface for what would otherwise be a much larger learning curve using only the CLI
(command line interface).

Step 1. Install Portainer.

Now that Docker is installed, you can install Portainer using Docker run. Open your terminal and
run the following command to install Portainer.

When complete, navigate to your host IP on port 9000. Example: 192.168.1.5:9000. You will see
the Portainer registration page.

If you don't know the host machine IP, you can use the following command to output the
information.

Mine is usually always listed under number 2 in the output.

apt install docker-compose

Install Git on the Host Machine

apt install git -y

Setting up Portainer on the Host
Machine

docker run -d \ --name="portainer" \ --restart on-failure \ -p 9000:9000 \ -p 8000:8000 \ -v

/var/run/docker.sock:/var/run/docker.sock \ -v portainer_data:/data \ portainer/portainer-

ce:latest

ip addr

https://www.youtube.com/watch?v=xGn7cFR3ARU&ab_channel=TechWorldwithNana&ref=noted.lol

Step 2. Create a Portainer admin account.

I uncheck the collection of anonymous statistics. I don't need anyone knowing what I do or when I
do it, but I am happy to give feedback of course.

Then click "Create user" and log in!

Maximize Your Homelab Potential with Self-Hosting and Open-Source Solutions.

No spam. Unsubscribe anytime.

For now, this is a great place to stop and get familiar with Portainer and the menu within the
dashboard. Browse around and check out the different settings but try not to get overwhelmed by
all the technical jargon you may not understand.

In the next article, we will go over Portainer basics and launching your first self-hosted application
using Portainer and the Docker Compose stacks feature.

Sign up for Noted

Final Notes and Thoughts

