Radicale

Github | Official Website

There is no official docker image. This was the most up to date project.

Step 1: Create Configuration Directory

Create a directory to store your Radicale configuration files:

mkdir -p /srv/Files/Radicale/config

Step 2: Create Configuration File

Create a file named config inside the config directory:

nano /srv/Files/Radicale/config/config

Paste the following configuration into the config file:

-*- mode: conf -*-

vim: ft=cfg
Config file for Radicale - A simple calendar server

#
#
Place it into /etc/radicale/config (global)
or ~/.config/radicale/config (user)
#
#

The current values are the default ones

[server]

CalDAV server hostnames separated by a comma
IPv4 syntax: address:port
IPv6 syntax: [address]:port

https://github.com/tomsquest/docker-radicale
https://radicale.org/

Hostname syntax (using "getaddrinfo" to resolve to IPv4/IPv6 adress(es)): hostname:port
For example: 0.0.0.0:9999, [::]1:9999, localhost:9999

#hosts = localhost:5232

hosts = 0.0.0.0:5232

Max parallel connections

#max_connections = 8

Max size of request body (bytes)
#max_content length = 100000000

Socket timeout (seconds)

#timeout = 30

SSL flag, enable HTTPS protocol
#ssl = False

SSL certificate path

#certificate = /etc/ssl/radicale.cert.pem

SSL private key
#key = /etc/ssl/radicale.key.pem

CA certificate for validating clients. This can be used to secure
TCP traffic between Radicale and a reverse proxy

#certificate authority =

SSL protocol, secure configuration: ALL -SSLv3 -TLSvl -TLSvl.1
#protocol = (default)

SSL ciphersuite, secure configuration: DHE:ECDHE:-NULL:-SHA (see also "man openssl-ciphers")

#ciphersuite = (default)

script name to strip from URI if called by reverse proxy

#script name = (default taken from HTTP X SCRIPT NAME or SCRIPT NAME)

[encoding]

Encoding for responding requests

#request = utf-8

Encoding for storing local collections

#stock = utf-8

[auth]

Authentication method

Value: none | htpasswd | remote user | http x remote user | dovecot | ldap | oauth2 | pam |
denyall

#type = denyall

type = htpasswd

Cache logins for until expiration time

#cache logins = false

Expiration time for caching successful logins in seconds

#cache successful logins expiry = 15

Expiration time of caching failed logins in seconds

#cache failed logins expiry = 90

URI to the LDAP server
#ldap uri = ldap://localhost

The base DN where the user accounts have to be searched

#ldap base = ##BASE DN##

The reader DN of the LDAP server
#ldap reader _dn = CN=ldapreader,CN=Users, ##BASE DN##

Password of the reader DN

#ldap secret = ldapreader-secret

Path of the file containing password of the reader DN

#ldap secret file = /run/secrets/ldap password

the attribute to read the group memberships from in the user's LDAP entry (default: not set)

#ldap _groups _attribute = memberOf

The filter to find the DN of the user. This filter must contain a python-style placeholder
for the login
#ldap filter = (&(objectClass=person) (uid={0}))

the attribute holding the value to be used as username after authentication

#ldap user attribute = cn

Use ssl on the ldap connection

#ldap use ssl = False

The certificate verification mode. NONE, OPTIONAL, default is REQUIRED
#ldap ssl verify mode = REQUIRED

The path to the CA file in pem format which is used to certificate the server certificate

#ldap ssl ca file =

Connection type for dovecot authentication (AF_UNIX|AF _INET|AF _INET6)
Note: credentials are transmitted in cleartext

#dovecot connection type = AF_UNIX

The path to the Dovecot client authentication socket (eg. /run/dovecot/auth-client on
Fedora). Radicale must have read / write access to the socket.

#dovecot_socket = /var/run/dovecot/auth-client

Host of via network exposed dovecot socket

#dovecot host = localhost

Port of via network exposed dovecot socket

#dovecot port = 12345

IMAP server hostname
Syntax: address | address:port | [address]:port | imap.server.tld

#imap host = localhost

Secure the IMAP connection

Value: tls | starttls | none

#imap security = tls

OAuth2 token endpoint URL
#oauth2 token endpoint = <URL>

PAM service

#pam serivce = radicale

PAM group user should be member of

#pam_group membership =

Htpasswd filename
#htpasswd filename = /etc/radicale/users

htpasswd filename = /config/users

Htpasswd encryption method

Value: plain | bcrypt | md5 | sha256 | sha512 | autodetect
bcrypt requires the installation of 'bcrypt' module.
#htpasswd _encryption = autodetect

htpasswd encryption = bcrypt

Enable caching of htpasswd file based on size and mtime ns

#htpasswd cache = False

Incorrect authentication delay (seconds)

#delay =1

Message displayed in the client when a password is needed

#realm = Radicale - Password Required

Convert username to lowercase, must be true for case-insensitive auth providers

#lc _username = False

Strip domain name from username

#strip domain = False

[rights]

Rights backend
Value: authenticated | owner only | owner write | from file

#type = owner _only

File for rights management from file

#file = /etc/radicale/rights

Permit delete of a collection (global)

#permit delete collection = True

Permit overwrite of a collection (global)

#permit overwrite collection = True

[storagel

Storage backend
Value: multifilesystem | multifilesystem nolock

#type = multifilesystem

Folder for storing local collections, created if not present
#filesystem folder = /var/lib/radicale/collections

filesystem folder = /data/collections

Folder for storing cache of local collections, created if not present
Note: only used in case of use cache subfolder * options are active
Note: can be used on multi-instance setup to cache files on local node (see below)

#filesystem cache folder = (filesystem folder)

Use subfolder 'collection-cache' for 'item' cache file structure instead of inside
collection folder
Note: can be used on multi-instance setup to cache 'item' on local node

#use cache subfolder for item = False

Use subfolder 'collection-cache' for 'history' cache file structure instead of inside
collection folder

Note: use only on single-instance setup, will break consistency with client in multi-
instance setup

#use cache subfolder for history = False

Use subfolder 'collection-cache' for 'sync-token' cache file structure instead of inside
collection folder

Note: use only on single-instance setup, will break consistency with client in multi-
instance setup

#use cache subfolder for synctoken = False

Use last modifiction time (nanoseconds) and size (bytes) for 'item' cache instead of SHA256
(improves speed)

Note: check used filesystem mtime precision before enabling

Note: conversion is done on access, bulk conversion can be done offline using storage
verification option: radicale --verify-storage

#use mtime and size for item cache = False

Use configured umask for folder creation (not applicable for 0S Windows)
Useful value: 0077 | 0027 | 0007 | 0022
#folder umask = (system default, usual 0022)

Delete sync token that are older (seconds)

#max_sync_token age = 2592000

Skip broken item instead of triggering an exception

#skip broken item = True

Command that is run after changes to storage, default is emtpy
Supported placeholders:

%(user): logged-in user

#
#
#
Command will be executed with base directory defined in filesystem folder
For "git" check DOCUMENTATION.md for bootstrap instructions

Example: git add -A && (git diff --cached --quiet || git commit -m "Changes by
\"%(user)s\"")

#hook =

Create predefined user collections
#

json format:

#

A

"def-addressbook": {

"D:displayname": "Personal Address Book",
"tag": "VADDRESSBOOK"
b
"def-calendar": {
"C:supported-calendar-component-set": "VEVENT,VJOURNAL,VTODO",
"D:displayname”: "Personal Calendar",

“tag": "VCALENDAR"

*#OH O H OB O OH OB OB OB

#predefined collections =

[web]

Web interface backend

Value: none | internal

#type = internal

[logging]
Threshold for the logger
Value: debug | info | warning | error | critical

#level = info

Don't include passwords in logs

#mask passwords = True

Log bad PUT request content

#bad put request content = False

Log backtrace on level=debug

#backtrace on debug = False

Log request header on level=debug

#request header on debug = False

Log request content on level=debug

#request content on_debug = False

Log response content on level=debug

#response content on debug = False

Log rights rule which doesn't match on level=debug

#rights rule doesnt match on_debug = False

Log storage cache actions on level=debug

#storage cache actions on debug = False
[headers]

Additional HTTP headers

#Access-Control-Allow-0rigin = *

[hook]

Hook types

Value: none | rabbitmq
#type = none

#rabbitmg endpoint =
#rabbitmqg topic =

#rabbitmq queue type = classic
[reporting]
When returning a free-busy report, limit the number of returned

occurences per event to prevent DOS attacks.

#max_ freebusy occurrence = 10000

Step 3: Create Users File

Create a file named users inside the config directory:

nano /srv/Files/Radicale/config/users

Each line in the users file should contain a username and a bcrypt-hashed password, separated by

a colon (:). Use a tool like Browserling's BCrypt Generator to generate the hashed passwords. The
file should look like this:

john:$2a$10$11Se4qIlaR1f0naClpGt32uNe/Dr61r4JrZQCNnY. kTx2KgJ70GPSm
sarah:$2a$10$1KEHYH]j rZ.QHpWQeB/feWe/Om4ZtckLI.cYkVOITW8/0xoLCpl/Wy

Step 4: Create and Run Docker Container

Create a docker-compose.yml file with the following content to define your Docker service:

services:
docker-radicale:
container name: radicale
ports:
- 104.152.49.17:5232:5232
init: true
read _only: true
security opt:
- no-new-privileges:true
cap_drop:
- ALL
cap_add:
- CHOWN
SETUID
SETGID

- KILL
deploy:
resources:
limits:
pids: 50
memory: 256M
healthcheck:
test: curl --fail http://localhost:5232 || exit 1
interval: 30s
retries: "3"
volumes:
- /srv/Files/Radicale/data:/data
- /srv/Files/Radicale/config:/config:ro

image: tomsquest/docker-radicale

https://www.browserling.com/tools/bcrypt

networks: {}

Run the following command to start the Docker container:

docker-compose up -d

This will start the Radicale server with the specified configuration.

Revision #3
Created 21 March 2025 10:15:43 by Admin
Updated 21 March 2025 10:42:24 by Admin

